References

References

  1. Bruzauskaite I, Bironaitė D, Bagdonas E, Bernotienė E. Scaffolds and cells for tissue regeneration: different scaffold pore sizes—different cell effects. Cytotechnology, 2016 May;68(3):355-69.
  2. Chiu YC, Cheng MH, Engel H, Kao S W, Larson JC, Gupta S, Brey E. M. The role of pore size on vascularization and tissue remodeling in PEG hydrogels. Biomaterials, 2011 Sep;32(26):6045-51.
  3. Artel A, Mehdizadeh H, Chiu YC, Brey EM, Cinar A. An agent-based model for the investigation of neovascularization within porouss caffolds. Tissue Eng Part A. 2011 Sep;17(17-18):2133-41.
  4. Constant JS et al. Lactate elicits vascular endothelial growth factor from macrophages: a possible alternative to hypoxia. WoundRepair Regen. 8 (2000), 353–360.
  5. Hunt TK, Aslam RS, Beckert S, Wagner S, Ghani QR, Hussain MZ, Roy S, Sen CS. Aerobically-Derived Lactate Stimulates Revascularization and Tissue Repair via Redox Mechanisms. Antioxid Redox Signal. 2007 Aug; 9(8): 1115–1124.
  6. Trabold O, Wagner S, Wicke C, Scheuenstuhl H, Hussain MZ, Rosen N, Seremetiev A, Becker HD, Hunt TK. Lactate and oxygen constitute a fundamental regulatory mechanism in wound healing. Wound Repair Regen. Nov-Dec 2003;11(6):504-9.
  7. Kumar SVM, Viji RI, Kiran MS, Sudhakaran PR. Endothelial cell response to lactate: implication of PAR modification of VEGF. JCell Physiol. 2007 May;211(2):477-85.
  8. Beckert S et al. Lactate stimulates endothelial cell migration. Wound Repair Regen. 14 (2006), 321–324.
  9. Porporato PE, Payen VL, Wicke C, De Saedeleer CJ, Preat V, Préat V, Thissen J-P, Feron O, Sonveaux P. Lactate stimulates angiogenesis and accelerates the healing of superficial and ischemic wounds in mice. Angiogenesis. 2012 Dec;15(4):581-92.
  10. Ruan G-X, Kazlauskas A. Lactate engages receptor tyrosine kinases Axl, Tie2, and vascular endothelial growth factor receptor 2 to activate phosphoinositide 3-kinase/Akt and promote angiogenesis. J Biol Chem. 2013 Jul 19;288(29):21161-21172.
  11. Green H, Goldberg B. Collagen and cell protein synthesis by an established mammalian fibroblast line. Nature 204 (1964), 347–349.
  12. Hunt TK et al. Anaerobic metabolism and wound healing: a hypothesis for the initiation and cessation of collagen synthesis in wounds. Am J Surg. 135 (1978), 328–332.
  13. Klein MB, Pham H, Yalamanchi N, Chang J. Flexor tendon wound healing in vitro: the effect of lactate on tendon cell proliferation and collagen production. J Hand Surg Am. 26 (2001), 847–854.
  14. Wagner S et al. Stimulation of fibroblast proliferation by lactate-mediated oxidants. Wound Repair Regen. 12 (2004), 368–373.
  15. Schneider LA, Korber A, Grabbe S, Dissemond J. Influence of pH on wound-healing: a new perspective for wound-therapy? Arch Dermatol Res. 2007 Feb;298(9):413-20.
  16. Schreml S, Szeimies RM, Karrer S, Heinlin J, Landthaler M, Babilas P. The impact of the pH value on skin integrity and cutaneous wound healing. J Eur Acad Dermatol Venereol. 2010 Apr;24(4):373-8.
  17. Strohal R, Mittlböck M, Hämmerle G. The Management of Critically Colonized and Locally Infected Leg Ulcers with an Acid-Oxidizing Solution: A Pilot Study Adv. Skin Wound Care. 2018;31:163–171122-131.
  18. Basavraj N, Suryawanshi N, Wadher B. Acidic Environment and Wound Healing: A Review. January 2015. Wounds: a Compendium of Clinical Research and Practice 27(1):5-11.
  19. Greener B, Hughes AA, Bannister NP, Douglass J. Proteases and pH in chronic wounds. J Wound Care. 2005 Feb;14(2):59-61.
  20. Liden B, Ramirez-GarciaLuna. Efficacy of a Polylactic Acid Matrix for the Closure of Wagner Grade 1 and 2 Diabetic Foot Ulcers: A Single-center, Prospective Randomized Trial. Wounds. 2023;35(8):E257-E260.